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Introduction



Motivation

o Machine Learning training requires one to evaluate how
one vector changes with respect to another?

- How output changes with respect to parameters?

« How do we find minimum of a scalar function?
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Neural Network
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O Optimizing the weights of a neural s SIS
network, or more generally the o
parameters of a machine learning model, -
can be an extremely complex task. =,

wo wl

Ll Many tools have been developed for this
O purpose. The core of these tools relies on
the use of "local information," such as
derivatives (gradients) and similar
methods.

. : @i"z"llllin Ly
Ll Here, the problem is to search for and find QQ@ ;;1111111,;;;;ff3§§§§§g§fgg‘;z*,‘z,,ﬁf
s q q q \ & [NERR Q::‘:Q:O". ON) ‘

the optimal weights in a continuous space, XX [ ”””"If% SRS

which has an infinite number of potential
candidates. Such a problem is also
referred to as Continuous Optimization.
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Different Functions

o Scalar Function f: R - R

0 ScalarField f: R" - R or f: R™* > Ror f:R—- R

0 Vector Field f: R” - R™ or f: R™* > R™or f:R —> R™
o Matrix Field f: R® - R™™or f: R - RP*™ or f:R — RP*™
a Tensor Field f:scalar,vector, matrix — Rk

In higher dimensions, if we take the derivative of a scalar field, it will result in

a scalar field (Gradient). If we take the derivative again, it will result in
a matrix-valued function (Hessian). O



Overview

Types of matrix derivative
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Types Scalar Vector Matrix
o, 9, oY
Scalar —y —y —_
ozx ozx ox
9, 0
Vector —y —y
ox 0x
. Oy Tensor! (Optional part
Matrix ﬁ of this course)
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Scalar function
Derivation



Overview

. fix+h)—fx) foc+h)
m

(x) or —(x) = Ui
) dx( ) h—0 h .

L
~ : h .

)

X x+h

O A derivative, which itself is a function f: R — IR, stores local/instantaneous
information about changes in the function.

L Note that the derivative may not be defined at certain points (or anywhere
at all). Functions that are differentiable throughout their domain are
referred to as differentiable.



Simple Rules
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Constant Rule : L (c)=0
dx

Constant Multiple Rule : Z— [cf(x)] = cf'(x)
X

Power Rule : d ") = nx"
dx

Sum Rule : Z—x [f0x) + g0 = F(x) + g'(x)

Difference Rule : % [F(x) - 9001 = F0x) - g'(x)

Product Rule : % [F)g()1 = f(x)g’(x) + gx)F(x)
d f(x)

uvotient Rule : |
Q dx |:g(x)}

. g(x)f(x) - f(x)g'(x)
[9(1?

Chain Rule : :—ftg(xn - £lg(x)]g'(x)
X
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Well-Behaved Functions in Differentiation

A function is considered well-behaved if it satisfies these criteria:

g

Continuity: The function is continuous across its domain (no jumps or
breaks).

Differentiability: The function is differentiable at every point in its domain
(no sharp corners).

Smoothness: The derivative is also continuous, ensuring smooth transitions.



Well-Behaved Functions in Differentiation

Examples of Well-Behaved Functions
e Polynomials: f(z) = z?%, f(z) = 3z3 + 2z — 5
e Trigonometric: f(z) = sin(z), f(x) = cos(x)
e Exponential: f(z) = e”

* Logarithmic (defined domain): f(x) = In(z), 2 > 0

Non-Well-Behaved Functions
 Discontinuous: f(x) = % atx =0
e Sharp Points: f(z) = |z|atz =0

e Oscillatory: f(x) = xsin(1/z) atz =0



Interpretation of First and Second Derivatives

Assume f is a function that is at least twice differentiable, meaning f and f’ are both

differentiable.

Points where f'(z) = 0 are called stable points of f. Note that a function may have no stable

points, a finite number of stable points, or an infinite number of them!
At a stable point 2™ for f:

o If f(*) > 0, the point is a local minimum.

e If f(2*) < 0, the point is a local maximum.

e If f(2*) = 0, we cannot determine the nature of the point based solely on the second

derivative and must analyze higher-order derivatives.



Interpretation of First and Second Derivatives

yi

inflection point

(a, f(a))

|

F<0 F>0 1% >0 1 <0
f*>0 ! f"=0 : f"<0 : f"<0

Slope increasing i Slope decreasing



Taylor series: Estimating a Function with a Polynomial

Assume that f is a well-behaved function, meaning it is infinitely differentiable (this is a very
strong condition but can sometimes be relaxed). Also, assume that 3 € R is a fixed and

desired point on the real number line.

Under these conditions, and for some & (sometimes for all z € R), we have:

— f¥) L E
fl@) =) f—()(ﬂi‘ — o)

k!
k=0

The Taylor series of f(x), even for points far away from x, provides an approximation of f(x)

based on the local information at the point x.



Estimating a Function with a Polynomial

constant linear quadratic

f(x) = f(x0) + f'(x0) (x — x0) + 52 £ (x0) + - -
f(x)

/ quadratic

i W ’
Mg
--------------------------------- 4‘.,‘-‘-—------------..-——--.—-----------

constant f( X0 )~

- linear

oo (k)
f) = Zf 20 (x - )" ‘_j




Taylor series Example

x> X
et=14+x4+—+—+...
21 3
_ x> X
sin(x) =x——+—— ...
3! 5!

X =3x+1=x>=-3x+1



Taylor series Example

We consider the polynomial
f(z) ==z* (5.9)

and seek the Taylor polynomial T§, evaluated at xy = 1. We start by com-
puting the coefficients [*)(1) for k =0,..., 6:

flhy=1 (5.10)
f(1)y=4 (5.11)
(1) =12 (5.12)
fO0) =24 (5.13)
f9(1) =24 (5.14)
@1y =0 (5.15)
@ =0 (5.16)
Therefore, the desired Taylor polynomial is
6 £0) (4
To(z) = f k(f“) (z — z0)F (5.17a)

:;idt(zf ) +6(x—1)2+4(x 1>+ (z-1)*+0. (5.17b)
Multiplying out and re-arranging yields
To(z)=(1—4+6—4+1)+z(4—12+12—4)
+22(6 — 12+ 6) + z3(4 — 4) 4 o* (5.18a)
=zt = f(z), (5.18b)

i.e., we obtain an exact representation of the original function.
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Scalar Field
Derivation



Scalar with respect to scalar

v
EASY



Vector-Valued Function

https://youtu.be/GkB4vW16QHI
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https://youtu.be/GkB4vW16QHI

Directional Derivative

2 sin(t)
§(t) = { ] 2sin(2) 1.819
2 cos(t/3)t s(2) = [ ] ~ [ ]

. 2cos(2/3) - 2 3.144
E
T Yy
S
6+
5+
a4+
s

st s(2)
24
¢ a)

::::::::::::::
::::::: t t t t t t
-6 -5 -4 -3 -2 1 2 3 4 5 6
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_3+
_44+
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Directional Derivative
o Example Dz+(a,by= V;F(a,lo\ U,

L Z={(x\)




Directional Derivative
o Example Dz+(a,by= _VsF(a,IDX U,

< Z = £ (%9




Directional Derivative

o Example D ~L(a b} VF(a b) -
<

- £ (CA)

U,
Z = (%9

DG —
'(7:4(,(')“2) y



Directional Derivative
o Example Dz+(a,by= VSF(O,L\-TI,
7 Z =L (x9)
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Directional Derivative
o0 Example Dap(a,%: ﬁ?(a,b\ U,
L Z = (2

CE282: Linear Algebra Maryam Ramezani

27



Directional Derivative
o0 Example Dap(a,%: ﬁ?(a,b\ U,
< Z:Q(;(M\

Slope =
Da\(:(a,\a\

'(7:4(,(,’“2) y
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Directional Derivative

fiR"S>R v=|,

D,f =v.Vf

o FOc+h9) — £(x)

V3 f(x)

R0 h|[¥]]



Scalar with respect to vector

Definition 5.5 (Partial Derivative). For a function f : R — R, = —

f(x), * € R™ of n variables z, ..., x,, we define the partial derivatives as
ﬁ — f(Il - h’:';l??e S :"Tn) - f($)
dr;y  h—0 h
(5.39)
(?_ —lim flxy,..., Tp_1,Tpn +h)— f(x)
r h—0 h,

and collect them in the row vector

4. df  10f(x) Of(x)  Of(x) | xn
Vof =gradf = iz | om o, . e RY*™  (5.40)

The row vector in (5.40) is called the gradient of f or the Jacobian



Note!

Example

d(xTa) .
ox

aT

Remark (Gradient as a Row Vector). It is not uncommon in the literature
to define the gradient vector as a column vector, following the conven-
tion that vectors are generally column vectors. The reason why we define
the gradient vector as a row vector is twofold: First, we can consistently
generalize the gradient to vector-valued functions f : R — R™ (then
the gradient becomes a matrix). Second, we can immediately apply the
multi-variate chain rule without paying attention to the dimension of the gradient.



Rules

Product rule:

Sum rule:

Chain rule:

0 0
7 g(@) + ()2
of Og
oz | Oz

 0g of
(9(f(x))) = of 0w



Chain Rule

EE_[M Bq.@ﬂ 8fma+8fm@
dt o dxq dxo

ot —
922) | ™ Ppy Ot @ Oz O
O o Example 1:

ot
Consider f(xy,x9) = 27 + 229, Where x; = sint and xp = cost, then
df  Of Oxry  Of Oxy
dt Oz, Ot  Oxy Ot
dsint dcost
+ 2
ot ot
= 2sintcost — 2sint = 2sint(cost — 1)

= 2sint

is the corresponding derivative of f with respect to ¢.
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Chain Rule

df_[af E,f] ou@ | §f Oy Of Oy

at o= o] om0 | T 5 Er T B, ot

If f(zy,79) is a function of z; and x5, where x1(s,t) and x5(s.t) are
® Example 2 themselves functions of two variables s and ¢, the chain rule yields the
partial derivatives

Of _ 0f 9x, , Of oy

8s Oz 8s = Oxzq Os’
of _ Of 0x, _ 0f oy

Ot - 6;1’-1 ot 6$Q o’

and the gradient is obtained by the matrix multiplication
835‘1 81}31

if G Cu :[@f 5‘f] s Ot

d(s,t) Oz d(s,t) Oxy Oxy] [Ozs Oro

~

~ 9(s, 1)



Scalar with respect to matrix

The derivative of a scalar y by a matrix X € R™*" is given by:

C_Jy Ay Oy ]
X1 0Xo1 "t 00X
Oy Jy dy
ay L 3X]_2 3X22 C aXmQ
8X . . ' .
dy dy Oy
-aXln 3X2H C a}{*mtn-
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Vector Field
Derivation




Vector with respect to vector
fR"—> R"

For a function f : R® — R™ and a vector @ = [zy,...,x,]T € R", the
rorresponding vector of function values is given as

fi(@)
flx) = : e R™.
fm()

The differentiation rules for every f; are exactly the
ones we discussed in section 03

(Ofi(x)  Ofi)]
Oxq oz,

Why this happen?? ! :
Ofm(@)  Ofm(x)
L 8331 8:‘31‘1 .




Vector with respect to vector

| B g_i 7 B ]iﬂlh_}g fi1(z1,--., T 1;T1'+-F;1:mi 11,---Zn)—f1(=) 7]
of _ || _ cR™
Ox ) ) |
i _%j;T_ _1'1111_;1__}[. fm{:r.l,...,a:?;_l=mi—|—f;{:r1-+1,...:rn}—fm[a:}_
@) _ | [or@]. . [or@
dax dxq dxy,
Ofi(z) | .. | 2h(x)
ox Orn,
= ; : €R™". " Jacobian Matrix
dfm( ) .. dfm(ir)
O dr,




Vector with respect to scalar
fR"—> R"

For a function f : R® — R™ and a vector @ = [zy,...,x,]T € R", the
rorresponding vector of function values is given as
fi(z)
flx) = : e R™.

fom()

The differentiation rules for every f; are exactly the ones we discussed in

section 03 . -

Ofi(x)

. L O
o Ifx € Ris ascalar, then it is a column vector _ '
O fm(x)

or




Dimensionality of (partial) derivatives

N =

af
or

If f R — R the grachent is simply a scalar (top-left entry).

For f : RY — R the gradientisa 1 x D
row vector (top-right entry). For f : R — RZ, the grachent isan £ x 1

column vector, and for f : R? — R the gradient is an E x D matrix.



Hessian Matrix

Suppose that f(xz) : R™ — R is a function that takes a vector in R™ and returns a real
number. Then the Hessian matrix with respect to @, written Vﬁf(a:) or simply as H is the
1. X m matrix of partial derivatives,

Pfa)  f(z) 8’ f(z)

Oz10x; 82,0z T dz,0z,

Pl (=) B f(z)

Vif(m) _ Oz2011 Ox2012 Oz20z,

: i) If(=) & f(z)
| Oz, 0z, 0z, 0z e O0x, 0z,

In other words, V2 f(z) € R™*™, with

_ 9f(x)

2
(vxf(m))ij = 92:0z;

Note that the Hessian is always symmetric, since
Pf(z) _ 0*f(x)
3:1:1-8:1:5,- 8:Ej 6:1:1
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Matrix Field
Derivation



oy
or

Matrix with respect to scalar

- 0Yqy dY;,
8y Y5
Ox ox
a}/ml BEHZ
~ Oz oz

The derivative of a matrix Y € R™*" by a scalar x is given by:

Y7, T

£
6 2n

oz

aKrm
Oz A
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Beautiful Examples!



Important note on product Rule

Product rule: 6(1( f(x)g(z)) = gg(m) + f(:r)—

Note. Please pay attention to following example!

a(xTY) T 0(3/) T a(x)
’ 0z T Y

o if xandy be vectors which elements are function of vector z



Let’s practice

0 (u(x)+v(x)) _ ou(x) n ov(x)

ox d0x ox
0 d(Ax) — 4
O L«
T
0 d(x" a) _ aT
dx
T
02549 _ 4T(4+ A7)
ox
T
02549 _ 94T A if A is symmetric

ox
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Hint!

CE282: Linear Algebra

A_) . a ax|Ix1 _ a1 x4 + a,Xx,
X = as aq||x2|  |azx; + asx,
d(ayx1 + azxy) 0(a;x; + azx;)
dAX 0x4 x5
dx — [0(asx; +asx;) 0(asx; + asx;)
d0xq dx,
B [a3 a4] =4

Maryam Ramezani
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Let’s practice

0A®) " _ 1 0AW®) 4o 1
a = A(t) Py A(t)
0 adg'{f*‘) — det(4) A1
dln(det(4))  , ,—1~T
= dA =(47)
a —adeta(f(t)) = det(A4) trace(A™1 _6(13(;)))
-1
0 dtrace(BA™") — _A-1pA-1
d0A
o(yTax) r
a o4 X
T
0 d(xT Ax) — oxT
0A

CE282: Linear Algebra Maryam Ramezani
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Review

Given A = [a;;] , the (i, j)-cofactor of A is the number C;; given by
C;;j = (1) det(4;;)
Then
det(4) = a11Cy1 + a12C12 + -+ a1pCip

Which is a cofactor expansion across the first row of A.

1 Ci1 Cp - Gy "
C C e C
-1 12 22 n2 -1 _ ;
=—|" : =A== adjA
A miE L ] adj
Cin Con - Cin
adj (A) = CT

The matrix of cofactors is called the adjugate (or classical adjoint) of A, denoted by adj A.
49
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Tensors



O

Tensor

Q Multi—-dimensional array of numbers

w = torch.empty(3)

x = torch.empty(2, 3)
y = torch.empty(2, 3, 4)
z = torch.empty(2, 3, 2, 4) .

Scalar  Vector Matrix
Scalar  Vector ' Matrix
(rank 0) (rank 1) (rank 2)

CE282: Linear Algebra Maryam Ramezani

Tensor

Rank-3 Tensor
(rank 3)

51



Tensors Addition

Adding tensors with same size

Adding scalar to tensor

Adding tensors with different size: if broacastable

- 7
11111
11111
111111

zﬂ+rs|j

5
0112
0

0




Tensors Product

—

(m x 1) - (n x k) = (m x k)
product is defined

CE282: Linear Algebra Maryam Ramezani
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Matrix with respect to vector

‘4 c ]R4x2 T e ]RS

e Approachl

Partial derivatives:

collate

0A
_ ]: 42
B, R




Matrix with respect to vector

e Approach 2 AcR*? zecR®

Iy

L

I3

A e R**? A cR?®

re-shape

eradient

dA

dA

— c RBX3 — & R4x2x3

dxr

dz

re-shape

CE282: Linear Algebra Maryam Ramezani
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